

 $(\mathbf{\otimes})$

i di cittoi								453	45	211 (Approved
		SXTBCS06050G	6 x 50mm					100	1200	
		SXTBCS06075G	6 x 75mm	6	10	16	6	100	600	
		SXTMCS06100G-A	6 x 100mm 📢	EN				100	600	\checkmark
	SXTM06120G-A 🌾		6 x 120mm	Ī				100	600	\checkmark
SXTB08050	SXTB08050G		8 x 50mm					100	600	
SXTB08060	SXTB08060G	SXTBCS08060G	8 x 60mm					100	600	
SXTB08075	SXTB08075G	SXTBCS08075G	8 x 75mm	8	13	21	8	100	500	
SXTB08100	SXTB08100G	SXTBCS08100G	8 x 100mm					100	400	
	SXTM08130G-A	SXTMCS08130G-A	8 x 130mm 📢	EN				50	250	~
	SXB08140GWHITE		8 x 140mm					50	250	
SXTB10060	SXTB10060G		10 x 60mm					50	250	
SXTB10075	SXTB10075G		10 x 75mm		17	25	9	50	250	
		SXTBCS10075G	10 X 75mm	10				50	300	
SXTB10100	SXTB10100G		10 x 100mm					50	250	
		SXTBCS10100G	10 X 100mm					50	300	
SXTB10120	SXTB10120G		10 x 120mm	10 17 100mm			50	250		
SXTB12075	SXTB12075G		12 x 75mm					50	150	
		SXTBCS12075G	12 X 75mm					50	200	
SXTB12100	SXTB12100G	SXTBCS12100G	12 x 100mm	10	10	20	10	50	150	
SXTB12120	SXTB12120G		12 x 120mm	12	19	28	10	25	125	
SXTB12150	SXTB12150G		12 x 150mm					25	75	
		SXTBCS12150G	12 X 150mm					20	120	
SXTB16100	SXTB16100G		16 x 100mm	10	24			15	60	
SXTB16150	SXTB16150G		16 x 150mm	16	24			15	60	

Information contained in this technical document is based on testing by the manufacturer and should be reviewed and approved by a design professional responsible for the given application. For safety critical fastening applications designed in accordance with SA TS 101:2015, AS5216:2018 please refer to the lccons website for a complete suite of compliant post-installed chemical and mechanical anchoring products.

W: www.iccons.com.au

۲

THUNDERBØLT PRO

PERFORMANCE | RECOMMENDED LOADS

ICCONS Serious Connections

TDS | 1015.3 (NZ)

MINIMUM

Loading Direction

SHEAR

High Tensile Boron Steel Galvanised

RECOMMENDED LOADS

GAL EXTERNAL		Zø	Ö			RECOMMENDED LOAD Tension or Shear		#
Part No.	Description	mm	mm	mm	mm	kg	qty	qty
SXTBEYE06050G	6 x 50mm	6	13	45	50	30	50	800
SXTBEYE08055G	8 x 55mm	8	14	55	55	60	50	300
SXTBEYE10065G	10 x 65mm	10	17	60	65	85	50	300
SXTBEYE12075G	12 x 75mm	12	22	60	75	140	20	120

۲

Note: Thunderbolt®PRO Eyebolt Screwbolt is designed for use in non-safety critical applications only. The Thunderbolt®PRO Eyebolt Screwbolt is NOT designed for use in Fall Arrest Systems or as a lifting anchor.

KC		IENDED	LUADS		Nr	ec			V	rec			
					TEN	SION		SHEAR					
	→₩←	8ª	↓.	CONCRETE			STEEL		STEEL				
Ar	nchor Size (mm)	Drill Size (mm)	Embedment Depth (mm)	20MPa (kN)	32MPa (kN)	40MPa (kN)	Heat Treated Carbon Steel (kN)	20MPa (kN)	32MPa (kN)	40MPa (kN)	Heat Treated Carbon Steel (KN)		
			30	2.2	2.7	3.1		2.8	3.5	3.9			
	6	6	65	4.7	5.7	6.6	8.5	8.8	11.2	12.5	5.3		
			100	7.2	8.5	10.2		16.8	21.3	23.8			
			40	3.8	4.7	5.4	17.0	4.3	5.4	6.0			
	8	8	70	6.7	8.2	9.5		9.9	12.5	13.9	10.5		
			100	9.6	11.8	13.6		16.8	21.3	5 13.9 3 23.8			
			50	5.8	7.0	8.1		5.9	7.6	8.4			
	10	10	75	8.7	10.6	12.2	26.9	10.9	13.8	15.5	10.5		
			100	11.5	14.0	16.2		16.8	21.3	23.8			
		12		60	7.8	9.9	11.1		7.8	9.9	11.1		
	12		80	11.6	14.1	16.3	39.4	12.0	15.2	17.0	24.5		
			100	14.4	17.6	20.4		16.8	21.3	23.8			
			70	9.8	12.4	13.9	66.9	9.9	12.5	13.9			
	10	16	85	13.2	16.5	18.7		13.2	16.7	18.7	41.5		
			100	15.9	19.4	22.4		16.8	21.3	23.8			

Note: The designer shall take into consideration both Concrete and Steel load capacities. Published load capacities incorporate a safety factor of 3 for concrete and 2.5 for steel. The above information has been derived from laboratory test results using NATA calibrated equiment and all loads are representative of a single anchor installed in a hammer drilled, dry hole remote from an edge. Please contact ICCONS® engineering department for specific design applications, engineering@iccons.com.au. **Limit State Design -** Multiply the above loads by 1.8 (Concrete) and 2 (Steel) to determine the Limit State Design capacities.

۲

MATERIAL SPECIFICATIONS

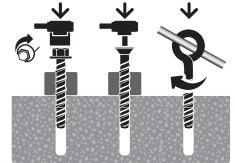
Anchor Part Anchor body

Plating

THUNDERBØLT PRO

DESIGN CONDITIONS – SIMPLIFIED DESIGN METHOD

TDS | 1015.3 (NZ)

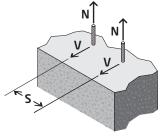

INSTALLATION

With the correct diameter drill bit, drill a hole to the depth of at least one diameter of the anchor deeper than the required embedment.

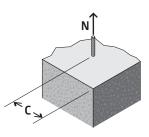
Clean dust and other material from the hole.

Install with either a socket or cordless impact driver. Apply pressure against the fixing and rotate to engage the first thread. Continue to tighten the anchor until flanged head is firmly seated against fixture.

Installation complete!

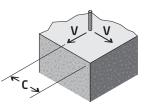

INTRODUCTION

The Thunderbolt[®] PRO screwbolt anchor functions with little expansionary forces and facilitates installations to be made closer to each other or to a concrete slab edge. ICCONS[™] published load data is based on the required spacing and edge distances needed to achieve these loads. Load values however should be reduced when anchors are installed at decreased edge or spacing distances to those published.


ICCONS[™] Spacing and Edge Distance Tables outline cumulative reduction multiplying factors required to be applied to the published load should there be a requirement to install anchors at decreased edge or spacing distances.

USING THE REDUCTION FACTORS

SPACING - TENSION & SHEAR (S)


To achieve published tension and shear loads the anchors should be installed at least 12 x the anchor diameter between each other. If spacing between anchors is closer than 12 x the anchor diameter apply appropriate reduction factor as outlined in the SPACING TABLE to the published load to ascertain the reduced load. EDGE DISTANCE - TENSION (C)

To achieve published tension loads the anchors should be installed at least 8 x the anchor diameter from a concrete edge. If edge distance is closer than 8 x the anchor diameter apply the appropriate reduction factor as outlined in the EDGE DISTANCE TENSION TABLE to the published load to ascertain the reduced load.

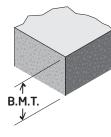
۲

EDGE DISTANCE - SHEAR (C)

To achieve published shear loads the anchors should be installed at least 12 x the anchor diameter from a concrete edge. If edge distance is closer than 12 x the anchor diameter apply the appropriate reduction factor as outlined in the EDGE DISTANCE SHEAR TABLE to the published load to ascertain the reduced load.

THUNDERBØLT PRO

DESIGN CONDITIONS – SIMPLIFIED DESIGN METHOD


Reduction Factors

	Anchor Size (mm)						REDUCTION FACTORS SPACING (S) L EDGE DISTANCE (C)					
Diameter				12		TENSION	SHEAR	TENSION	SHEAR			
(d)	Anchor Spa	acing (mm)					S _t	S _s	C _t C _s			
3(d)	18	24	30	36	48			0.70	0.15			
4(d)	24	32	40	48	64	0.50	0.75	0.76	0.24			
5(d)	30	40	50	60	80	0.56	0.78	0.82	0.34			
6(d)	36	48	60	72	96	0.63	0.81	0.88	0.43			
7(d)	42	56	70	84	112	0.69	0.84	0.94	0.53			
8(d)	48	64	80	96	128	0.75	0.88	1.00	0.62			
9(d)	54	72	90	108	144	0.81	0.91		0.72			
10(d)	60	80	100	120	160	0.88	0.94		0.81			
11(d)	66	88	110	132	176	0.94	0.97		0.91			
12(d)	72	96	120	144	192	1.00	1.00		1.00			

.

Base Material Thickness

Base material thickness should be 1.5 x h_{embed.} or a minimum of 75mm, always use the greater of the two values.

Combined Tension & Shear Loading

For combined tension and shear load applications the following equations shall be satisfied; N_{applied} / N_{rec} ≤ 1 V_{applied} / V_{rec} ≤ 1 $(N_{applied} / N_{rec}) + (V_{applied} / V_{rec}) \le 1.2$

Where

N_{rec}

V_{rec}

= Applied Tension Load Napplied

= Recommended Tension Load

= Applied Shear Load V_{applied}

Recommended Shear Load =